If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-18=12x
We move all terms to the left:
3x^2-18-(12x)=0
a = 3; b = -12; c = -18;
Δ = b2-4ac
Δ = -122-4·3·(-18)
Δ = 360
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{360}=\sqrt{36*10}=\sqrt{36}*\sqrt{10}=6\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-6\sqrt{10}}{2*3}=\frac{12-6\sqrt{10}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+6\sqrt{10}}{2*3}=\frac{12+6\sqrt{10}}{6} $
| (8x+7)2=16 | | 7(6-2a)=5(1-3a) | | 9x4+35x2−4=0 | | 4(5x-2=)2(9x+3) | | r-5/4=7 | | 2x+(4x+15)=9 | | 14=-2(2x-1) | | 4/3=-6e-6/5 | | 10x-20=1+4 | | 3n+n+5=25 | | 3n+n+5=225 | | 11m-8-6m=30 | | -23=5m+5+2m | | 2x+4/6=5x-3/7 | | 2(9-1)-y=23 | | x33+8=17 | | 2a/3-4a=8 | | 13=18-5p | | x^2-19.2156862745x=94.1568627451 | | M^2+16m-52=0 | | -4t^2+-20t+10=0 | | y+5y+15=33 | | M^2+16m+64=116 | | 22=-2e+8e+4 | | -27=-6w+3(w-6) | | t −9=11 9 | | 7x-6=20x+3 | | 8y-2y-7=5 | | -4.9t^2+25t-3=0 | | 7m-27=38 | | -4.9t+25t-3=0 | | 151*12=207-7d |